Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Mol Cancer Ther ; 22(12): 1390-1403, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37616542

ABSTRACT

Malignant peripheral nerve sheath tumors (MPNST) are highly aggressive soft-tissue sarcomas that arise from neural tissues and carry a poor prognosis. Previously, we found that the glutamine amidotransferase inhibitor JHU395 partially impeded tumor growth in preclinical models of MPNST. JHU395 inhibits de novo purine synthesis in human MPNST cells and murine tumors with partial decreases in purine monophosphates. On the basis of prior studies showing enhanced efficacy when glutamine amidotransferase inhibition was combined with the antimetabolite 6-mercaptopurine (6-MP), we hypothesized that such a combination would be efficacious in MPNST. Given the known toxicity associated with 6-MP, we set out to develop a more efficient and well-tolerated drug that targets the purine salvage pathway. Here, we report the discovery of Pro-905, a phosphoramidate protide that delivered the active nucleotide antimetabolite thioguanosine monophosphate (TGMP) to tumors over 2.5 times better than equimolar 6-MP. Pro-905 effectively prevented the incorporation of purine salvage substrates into nucleic acids and inhibited colony formation of human MPNST cells in a dose-dependent manner. In addition, Pro-905 inhibited MPNST growth and was well-tolerated in both human patient-derived xenograft (PDX) and murine flank MPNST models. When combined with JHU395, Pro-905 enhanced the colony formation inhibitory potency of JHU395 in human MPNST cells and augmented the antitumor efficacy of JHU395 in mice. In summary, the dual inhibition of the de novo and purine salvage pathways in preclinical models may safely be used to enhance therapeutic efficacy against MPNST.


Subject(s)
Nerve Sheath Neoplasms , Neurofibrosarcoma , Humans , Animals , Mice , Glutamine , Cell Line, Tumor , Antimetabolites/therapeutic use , Nerve Sheath Neoplasms/drug therapy
2.
Front Chem ; 10: 889737, 2022.
Article in English | MEDLINE | ID: mdl-35668826

ABSTRACT

Compounds with a phosphonate group, i.e., -P(O)(OH)2 group attached directly to the molecule via a P-C bond serve as suitable non-hydrolyzable phosphate mimics in various biomedical applications. In principle, they often inhibit enzymes utilizing various phosphates as substrates. In this review we focus mainly on biologically active phosphonates that originated from our institute (Institute of Organic Chemistry and Biochemistry in Prague); i.e., acyclic nucleoside phosphonates (ANPs, e.g., adefovir, tenofovir, and cidofovir) and derivatives of non-nucleoside phosphonates such as 2-(phosphonomethyl) pentanedioic acid (2-PMPA). Principal strategies of their syntheses and modifications to prodrugs is reported. Besides clinically used ANP antivirals, a special attention is paid to new biologically active molecules with respect to emerging infections and arising resistance of many pathogens against standard treatments. These new structures include 2,4-diamino-6-[2-(phosphonomethoxy)ethoxy]pyrimidines or so-called "open-ring" derivatives, acyclic nucleoside phosphonates with 5-azacytosine as a base moiety, side-chain fluorinated ANPs, aza/deazapurine ANPs. When transformed into an appropriate prodrug by derivatizing their charged functionalities, all these compounds show promising potential to become drug candidates for the treatment of viral infections. ANP prodrugs with suitable pharmacokinetics include amino acid phosphoramidates, pivaloyloxymethyl (POM) and isopropoxycarbonyloxymethyl (POC) esters, alkyl and alkoxyalkyl esters, salicylic esters, (methyl-2-oxo-1,3-dioxol-4-yl) methyl (ODOL) esters and peptidomimetic prodrugs. We also focus on the story of cytostatics related to 9-[2-(phosphonomethoxy)ethyl]guanine and its prodrugs which eventually led to development of the veterinary drug rabacfosadine. Various new ANP structures are also currently investigated as antiparasitics, especially antimalarial agents e.g., guanine and hypoxanthine derivatives with 2-(phosphonoethoxy)ethyl moiety, their thia-analogues and N-branched derivatives. In addition to ANPs and their analogs, we also describe prodrugs of 2-(phosphonomethyl)pentanedioic acid (2-PMPA), a potent inhibitor of the enzyme glutamate carboxypeptidase II (GCPII), also known as prostate-specific membrane antigen (PSMA). Glutamate carboxypeptidase II inhibitors, including 2-PMPA have been found efficacious in various preclinical models of neurological disorders which are caused by glutamatergic excitotoxicity. Unfortunately its highly polar character and hence low bioavailability severely limits its potential for clinical use. To overcome this problem, various prodrug strategies have been used to mask carboxylates and/or phosphonate functionalities with pivaloyloxymethyl, POC, ODOL and alkyl esters. Chemistry and biological characterization led to identification of prodrugs with 44-80 fold greater oral bioavailability (tetra-ODOL-2-PMPA).

3.
Biomedicines ; 10(3)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35327382

ABSTRACT

Despite the eradication of smallpox four decades ago, poxviruses continue to be a threat to humans and animals. The arsenal of anti-poxvirus agents is very limited and understanding mechanisms of resistance to agents targeting viral DNA polymerases is fundamental for the development of antiviral therapies. We describe here the phenotypic and genotypic characterization of poxvirus DNA polymerase mutants isolated under selective pressure with different acyclic nucleoside phosphonates, including HPMPC (cidofovir), cHPMPC, HPMPA, cHPMPA, HPMPDAP, HPMPO-DAPy, and PMEO-DAPy, and the pyrophosphate analogue phosphonoacetic acid. Vaccinia virus (VACV) and cowpox virus drug-resistant viral clones emerging under drug pressure were characterized phenotypically (drug-susceptibility profile) and genotypically (DNA polymerase sequencing). Different amino acid changes in the polymerase domain and in the 3'-5' exonuclease domain were linked to drug resistance. Changes in the 3'-5' domain emerged earlier than in the polymerase domain when viruses acquired a combination of mutations. Our study highlights the importance of poxvirus DNA polymerase residues 314, 613, 684, 688, and 851, previously linked to drug resistance, and identified several novel mutations in the 3'-5' exonuclease domain (M313I, F354L, D480Y) and in the DNA polymerase domain (A632T, T831I, E856K, L924F) associated with different drug-susceptibility profiles. Furthermore, a combination of mutations resulted in complex patterns of cross-resistance. Modeling of the VACV DNA polymerase bearing the newly described mutations was performed to understand the effects of these mutations on the structure of the viral enzyme. We demonstrated the emergence of drug-resistant DNA polymerase mutations in complex patterns to be considered in case such mutations should eventually arise in the clinic.

4.
Int J Mol Sci ; 22(3)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540748

ABSTRACT

Tuberculosis (TB) remains one of the major health concerns worldwide. Mycobacterium tuberculosis (Mtb), the causative agent of TB, can flexibly change its metabolic processes during different life stages. Regulation of key metabolic enzyme activities by intracellular conditions, allosteric inhibition or feedback control can effectively contribute to Mtb survival under different conditions. Phosphofructokinase (Pfk) is one of the key enzymes regulating glycolysis. Mtb encodes two Pfk isoenzymes, Pfk A/Rv3010c and Pfk B/Rv2029c, which are differently expressed upon transition to the hypoxia-induced non-replicating state of the bacteria. While pfkB gene and protein expression are upregulated under hypoxic conditions, Pfk A levels decrease. Here, we present biochemical characterization of both Pfk isoenzymes, revealing that Pfk A and Pfk B display different kinetic properties. Although the glycolytic activity of Pfk A is higher than that of Pfk B, it is markedly inhibited by an excess of both substrates (fructose-6-phosphate and ATP), reaction products (fructose-1,6-bisphosphate and ADP) and common metabolic allosteric regulators. In contrast, synthesis of fructose-1,6-bisphosphatase catalyzed by Pfk B is not regulated by higher levels of substrates, and metabolites. Importantly, we found that only Pfk B can catalyze the reverse gluconeogenic reaction. Pfk B thus can support glycolysis under conditions inhibiting Pfk A function.


Subject(s)
Bacterial Proteins/metabolism , Mycobacterium tuberculosis/enzymology , Phosphofructokinases/metabolism , Adenosine Diphosphate/metabolism , Adenosine Diphosphate/pharmacology , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Allosteric Regulation , Bacterial Proteins/antagonists & inhibitors , Catalysis , Enzyme Induction , Feedback, Physiological , Fructosediphosphates/biosynthesis , Fructosediphosphates/pharmacology , Fructosephosphates/metabolism , Fructosephosphates/pharmacology , Gluconeogenesis , Glycolysis , Hexosephosphates/metabolism , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Kinetics , L-Lactate Dehydrogenase/metabolism , Mycobacterium tuberculosis/drug effects , Oxygen/pharmacology , Phosphofructokinases/antagonists & inhibitors , Pyruvate Kinase/metabolism , Recombinant Proteins/metabolism , Substrate Specificity
5.
Bioorg Med Chem ; 32: 115998, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33440320

ABSTRACT

In analogy to antiviral acyclic nucleoside phosphonates, a series of 5-amino-3-oxo-1,2,4-thiadiazol-3(2H)-ones bearing a 2-phosphonomethoxyethyl (PME) or 3-hydroxy-2-(phosphonomethoxy)propyl (HPMP) group at the position 2 of the heterocyclic moiety has been synthesized. Diisopropyl esters of PME- and HPMP-amines have been converted to the N-substituted ureas and then reacted with benzoyl, ethoxycarbonyl, and Fmoc isothiocyanates to give the corresponding thiobiurets, which were oxidatively cyclized to diisopropyl esters of 5-amino-3-oxo-2-PME- or 2-HPMP- 1,2,4-thiadiazol-3(2H)-ones. The phosphonate ester groups were cleaved with bromotrimethylsilane, yielding N5-protected phosphonic acids. The subsequent attempts to remove the protecting group from N5 under alkaline conditions resulted in the cleavage of the 1,2,4-thiadiazole ring. Similarly, compounds with a previously unprotected 5-amino-1,2,4-thiadiazolone base moiety were stable only in the form of phosphonate esters. The series of twenty-one newly prepared 1,2,4-thiadiazol-3(2H)-ones were explored as potential inhibitors of cysteine-dependent enzymes - human cathepsin K (CatK) and glycogen synthase kinase 3ß (GSK-3ß). Several compounds exhibited an inhibitory activity toward both enzymes in the low micromolar range. The inhibitory potency of some of them toward GSK-3ß was similar to that of the thiadiazole GSK-3ß inhibitor tideglusib, whereas others exhibited more favorable toxicity profile while retaining good inhibitory activity.


Subject(s)
Antineoplastic Agents/pharmacology , Cathepsin K/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Nucleosides/pharmacology , Organophosphonates/pharmacology , Thiadiazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cathepsin K/metabolism , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Molecular Structure , Nucleosides/chemical synthesis , Nucleosides/chemistry , Organophosphonates/chemical synthesis , Organophosphonates/chemistry , Structure-Activity Relationship , Thiadiazoles/chemical synthesis , Thiadiazoles/chemistry
6.
Article in English | MEDLINE | ID: mdl-33288638

ABSTRACT

Polyomavirus infections occur commonly in humans and are normally nonfatal. However, in immunocompromised individuals, they are intractable and frequently fatal. Due to a lack of approved drugs to treat polyomavirus infections, cidofovir, a phosphonate nucleotide analog approved to treat cytomegalovirus infections, has been repurposed as an antipolyomavirus agent. Cidofovir has been modified in various ways to improve its efficacies as a broad-spectrum antiviral agent. However, the actual mechanisms and targets of cidofovir and its modified derivatives as antipolyomavirus agents are still under research. Here, polyomavirus large tumor antigen (Tag) activities were identified as the viral target of cidofovir derivatives. The alkoxyalkyl ester derivatives of cidofovir efficiently inhibit polyomavirus DNA replication in cell-free human extracts and a viral in vitro replication system utilizing only purified proteins. We present evidence that DNA helicase and DNA binding activities of polyomavirus Tags are diminished in the presence of low concentrations of alkoxyalkyl ester derivatives of cidofovir, suggesting that the inhibition of viral DNA replication is at least in part mediated by inhibiting single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) binding activities of Tags. These findings show that the alkoxyalkyl ester derivatives of cidofovir are effective in vitro without undergoing further conversions, and we conclude that the inhibitory mechanisms of nucleotide analog-based drugs are more complex than previously believed.


Subject(s)
Antigens, Viral, Tumor , Polyomavirus , Cytosine , DNA Replication , DNA, Viral/genetics , Esters/pharmacology , Humans , Nucleotides , Polyomavirus/genetics , Virus Replication
7.
Plant J ; 102(1): 68-84, 2020 04.
Article in English | MEDLINE | ID: mdl-31733119

ABSTRACT

Repetitive DNA sequences and some genes are epigenetically repressed by transcriptional gene silencing (TGS). When genetic mutants are not available or problematic to use, TGS can be suppressed by chemical inhibitors. However, informed use of epigenetic inhibitors is partially hampered by the absence of any systematic comparison. In addition, there is emerging evidence that epigenetic inhibitors cause genomic instability, but the nature of this damage and its repair remain unclear. To bridge these gaps, we compared the effects of 5-azacytidine (AC), 2'-deoxy-5-azacytidine (DAC), zebularine and 3-deazaneplanocin A (DZNep) on TGS and DNA damage repair. The most effective inhibitor of TGS was DAC, followed by DZNep, zebularine and AC. We confirmed that all inhibitors induce DNA damage and suggest that this damage is repaired by multiple pathways with a critical role of homologous recombination and of the SMC5/6 complex. A strong positive link between the degree of cytidine analog-induced DNA demethylation and the amount of DNA damage suggests that DNA damage is an integral part of cytidine analog-induced DNA demethylation. This helps us to understand the function of DNA methylation in plants and opens the possibility of using epigenetic inhibitors in biotechnology.


Subject(s)
DNA Damage , Epigenesis, Genetic , Gene Silencing , Adenosine/analogs & derivatives , Adenosine/pharmacology , Arabidopsis/genetics , Azacitidine/pharmacology , Chromosome Aberrations/drug effects , Cytidine/analogs & derivatives , Cytidine/pharmacology , DNA Damage/drug effects , DNA Methylation/drug effects , DNA Repair/drug effects , Decitabine/pharmacology , Epigenesis, Genetic/drug effects , Gene Silencing/drug effects , Heterochromatin/drug effects , RNA Interference/drug effects , Tandem Repeat Sequences/drug effects
8.
Bioorg Med Chem ; 27(7): 1246-1253, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30777664

ABSTRACT

An enzymatic alternative to the chemical synthesis of chiral gem-difluorinated alcohols has been developed. The method is highly effective and stereoselective, feasible at laboratory temperature, avoiding the use of toxic heavy metal catalysts which is an important benefit in medicinal chemistry including the synthesis of drugs and drug precursors. Candida antarctica lipases A and B were applied for the enantioselective resolution of side-chain modified gem-difluorinated alcohols, (R)- and (S)-3-benzyloxy-1,1-difluoropropan-2-ols (1a and 1b), compounds serving as chiral building blocks in the synthesis of various bioactive molecules bearing a gem-difluorinated grouping. The catalytic activity of these lipases was investigated for the chiral acetylation of 1a and 1b in non-polar solvents using vinyl acetate as an acetyl donor. The dependence of the reaction course on various substrate and enzyme concentrations, reaction time, and temperature was monitored by chiral capillary electrophoresis (CE) using sulfobutyl ether ß-cyclodextrin as a stereoselective additive of the aqueous background electrolyte. The application of CE, NMR, and MS methods has proved that the complex enzyme effect of Candida antarctica lipase B leads to the thermodynamically stable (S)-enantiomer 1b instead of the expected acetylated derivatives. In contrast, the enantioselective acetylation of racemic alcohol 1 was observed as a kinetically controlled process, where (R)-enantiomer 1a was formed as the main product. This process was followed by enzymatic hydrolysis and chiral isomerisation. Finally, single pure enantiomers 1a and 1b were isolated and their absolute configurations were assigned from NMR analysis after esterification with Mosher's acids.


Subject(s)
Fungal Proteins/metabolism , Lipase/metabolism , Biocatalysis , Electrophoresis, Capillary , Molecular Structure , Stereoisomerism , Thermodynamics
9.
Article in English | MEDLINE | ID: mdl-30526265

ABSTRACT

Syntheses of α-branched alkyl and aryl substituted 9-[2-(phosphonomethoxy)ethyl]purines from substituted 1,3-dioxolanes have been developed. Key synthetic precursors, α-substituted dialkyl [(2-hydroxyethoxy)methyl]phosphonates were prepared via Lewis acid mediated cleavage of 1,3-dioxolanes followed by reaction with dialkyl or trialkyl phosphites. The best preparative yields were achieved under conditions utilizing tin tetrachloride as Lewis acid and triisopropyl phosphite. Attachment of purine bases to dialkyl [(2-hydroxyethoxy)methyl]phosphonates was performed by Mitsunobu reaction. Final α-branched 9-[2-(phosphonomethoxy)ethyl]purines were tested for antiviral, cytostatic and antiparasitic activity, the latter one determined as inhibitory activity towards Plasmodium falciparum enzyme hypoxanthine-guanine-xanthine phosphoribosyltransfesase. In most cases biological activity was only marginal.


Subject(s)
Antiparasitic Agents/pharmacology , Antiviral Agents/pharmacology , DNA Viruses/drug effects , Dioxolanes/chemistry , Enzyme Inhibitors/pharmacology , Pentosyltransferases/antagonists & inhibitors , Plasmodium falciparum/drug effects , Purines/pharmacology , Animals , Antiparasitic Agents/chemical synthesis , Antiparasitic Agents/chemistry , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Line, Tumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Mice , Microbial Sensitivity Tests , Molecular Structure , Pentosyltransferases/metabolism , Plasmodium falciparum/enzymology , Purines/chemical synthesis , Purines/chemistry
10.
Tetrahedron ; 75(39): 130529, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-32287433

ABSTRACT

With respect to the strong antiviral activity of (S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]-5-azacytosine various types of its side chain fluorinated analogues were prepared. The title compound, (S)-1-[3-fluoro-2-(phosphonomethoxy)propyl]-5-azacytosine (FPMP-5-azaC) was synthesised by the condensation reaction of (S)-2-[(diisopropoxyphosphoryl)methoxy)-3-fluoropropyl p-toluenesulfonate with a sodium salt of 5-azacytosine followed by separation of appropriate N 1 and O 2 regioisomers and ester hydrolysis. Transformations of FPMP-5-azaC to its 5,6-dihydro-5-azacytosine counterpart, amino acid phosphoramidate prodrugs and systems with an annelated five-membered imidazole ring, i.e. imidazo [1,2-a][1,3,5]triazine derivatives were also carried out. 1-(2-Phosphonomethoxy-3,3,3-trifluoropropyl)-5-azacytosine was prepared from 5-azacytosine and trifluoromethyloxirane to form 1-(3,3,3-trifluoro-2-hydroxypropyl)-5-azacytosine which was treated with diisopropyl bromomethanephosphonate followed by deprotection of esters. Antiviral activity of all newly prepared compounds was studied. FPMP-5-azaC diisopropyl ester inhibited the replication of herpes viruses with EC50 values that were about three times higher than that of the reference anti-HCMV drug ganciclovir without displaying cytotoxicity.

11.
Bioorg Med Chem ; 25(17): 4637-4648, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28757102

ABSTRACT

New 2,4-diamino-6-[2-(phosphonomethoxy)ethoxy]pyrimidine (PMEO-DAPy) and 1-[2-(phosphonomethoxy)ethyl]-5-azacytosine (PME-5-azaC) prodrugs were prepared with a pro-moiety consisting of carbonyloxymethyl esters (POM, POC), alkoxyalkyl esters, amino acid phosphoramidates and/or tyrosine. The activity of the prodrugs was evaluated in vitro against different virus families. None of the synthesized prodrugs demonstrated activity against RNA viruses but some of them proved active against herpesviruses [including herpes simplex virus (HSV), varicella-zoster virus (VZV), and human cytomegalovirus (HCMV)]. The bis(POC) and the bis(amino acid) phosphoramidate prodrugs of PMEO-DAPy inhibited herpesvirus replication at lower doses than the parent compound although the selectivity against HSV and VZV was only slightly improved compared to PMEO-DAPy. The mono-octadecyl ester of PME-5-azaC emerged as the most potent and selective PME-5-azaC prodrug against HSV, VZV and HCMV with EC50's of 0.15-1.12µM while PME-5-azaC only had marginal anti-herpesvirus activity. Although the bis(hexadecylamido-l-tyrosyl) and the bis(POM) esters of PME-5-azaC were also very potent anti-herpesvirus drugs, these were less selective than the mono-octadecyl ester prodrug.


Subject(s)
Antiviral Agents/chemical synthesis , Organophosphonates/chemistry , Prodrugs/chemical synthesis , Pyrimidine Nucleosides/chemistry , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cell Line , Cytomegalovirus/drug effects , Herpesvirus 3, Human/drug effects , Humans , Organophosphonates/chemical synthesis , Organophosphonates/pharmacology , Prodrugs/chemistry , Prodrugs/pharmacology , Simplexvirus/drug effects
12.
Mini Rev Med Chem ; 17(10): 818-833, 2017.
Article in English | MEDLINE | ID: mdl-28215138

ABSTRACT

OBJECTIVE: The review covers basic principles of the prodrug strategy applied to antiviral nucleoside drugs or drug candidates. Specific role of amino acids as promoieties is explained with respect to transport mechanisms, pharmacokinetics and a low toxicity of compounds. Synthetic approaches to the most important representatives (compounds under clinical investigations or available on the market) are described, including valacyclovir, valganciclovir, valomaciclovir stearate, valcyclopropavir, valtorcitabine, valopicitabine and several attempts to amino acid modifications of antiretroviral nucleosides. METHOD: A special attention is paid to acyclic nucleoside phosphonates, where the phosphonic acid residue is esterified with a side-chain hydroxyl group of appropriate amino acid (serine, tyrosine) which can be used as single amino acid or as a part of dipeptides further modified on the terminal carboxyl function. The most advantageous pharmacokinetic profile and the best oral bioavailability were found in tyrosinebased prodrugs. RESULTS & CONCLUSION: Studies were performed successfully on 1-(S)-[3-hydroxy-2-(phosphonomethoxy) propyl]cytosine (cidofovir), 9-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]adenine and some (R)-2- (phosphonomethoxy)propyl and 2-(phosphonomethoxy)ethyl derivatives including adefovir.


Subject(s)
Antiviral Agents/chemistry , Nucleosides/chemistry , Nucleotides/chemistry , Prodrugs/chemistry , Adenine/analogs & derivatives , Adenine/chemistry , Adenine/pharmacology , Antiviral Agents/pharmacology , Cidofovir , Cytomegalovirus/drug effects , Cytosine/analogs & derivatives , Cytosine/chemistry , Cytosine/pharmacology , Herpesvirus 3, Human/drug effects , Humans , Nucleosides/pharmacology , Nucleotides/pharmacology , Organophosphonates/chemistry , Organophosphonates/pharmacology , Prodrugs/pharmacology
13.
J Chromatogr A ; 1479: 185-193, 2017 Jan 06.
Article in English | MEDLINE | ID: mdl-27919519

ABSTRACT

Capillary electrophoresis (CE) and quantum mechanical density functional theory (DFT) were applied to the investigation of the acid-base and electromigration properties of important compounds: newly synthesized derivatives of 5-azacytosine - analogs of efficient antiviral drug cidofovir. These compounds exhibit a strong antiviral activity and they are considered as potential new antiviral agents. For their characterization and application, it is necessary to know their acid-base properties, particularly the acidity constants (pKa) of their ionogenic groups (the basic N3 atom of the triazine ring and the acidic phosphonic acid group in the alkyl chain). First, the mixed acidity constants (pKamix) of these ionogenic groups and the ionic mobilities of these compounds were determined by nonlinear regression analysis of the pH dependence of their effective electrophoretic mobilities. Effective mobilities were measured by CE in a series of background electrolytes in a wide pH range (2.0-10.5), at constant ionic strength (25mM) and constant temperature (25°C). Subsequently, the pKamix values were recalculated to thermodynamic pKa values using the Debye-Hückel theory. The thermodynamic pKa value of the NH+ moiety at the N3 atom of the triazine ring was found to be in the range 2.82-3.30, whereas the pKa of the hydrogenphosphonate group reached values from 7.19 to 7.47, depending on the structure of the analyzed compounds. These experimentally determined pKa values were in good agreement with those calculated by quantum mechanical DFT. In addition, DFT calculations revealed that from the four nitrogen atoms in the 5-azacytosine moiety, the N3 atom of the triazine ring is preferentially protonated. Effective charges of analyzed compounds ranged from zero or close-to-zero values at pH 2 to -2 elementary charges at pH≥9. Ionic mobilities were in the range (-16.7 to -19.1)×10-9m2V-1s-1 for univalent anions and in the interval (-26.9 to -30.3)×10-9m2V-1s-1 for divalent anions.


Subject(s)
Acids/chemistry , Cytosine/analogs & derivatives , Electrophoresis, Capillary , Cytosine/chemistry , Electrolytes/chemistry , Hydrogen-Ion Concentration , Osmolar Concentration , Quantum Theory , Thermodynamics
14.
Cytometry A ; 91(2): 133-143, 2017 02.
Article in English | MEDLINE | ID: mdl-27911980

ABSTRACT

Aberrant DNA methylation that results in silencing of genes has remained a significant interest in cancer research. Despite major advances, the success of epigenetic therapy is elusive due to narrow therapeutic window. A wide variety of naturally occurring epigenetic agents and synthetic molecules that can alter methylation patterns exist, however, their usefulness in epigenetic therapy remains unknown. This underlines the need for effective tumor models for large-scale screening of drug candidates with potent hypomethylation activity. In this study, we present the development of a cell-based DNA demethylation detection system, which is amenable for high content screening of epigenetic drugs in two-dimensional and three-dimensional cell culture models. Additionally, the detection system also supports the in vivo monitoring of demethylation efficacy of potential lead compounds from in vitro screens in tumor xenografts. The described detection system not only permits the continuous monitoring of demethylation but also of the induced cytostatic/cytotoxic drug effects in live cells, as a function of time. The detection system is fluorescence based and exploits the dominant ability of DNA methylation to inhibit gene transcription, and utilizes FLJ32130 gene, which is silenced on account of promoter hypermethylation in human colorectal cancer. The described work will provide the researchers with an efficient tool for epigenetic drug screens on a high throughput platform and would therefore benefit academic and industrial drug discovery. © 2016 International Society for Advancement of Cytometry.


Subject(s)
Colorectal Neoplasms/drug therapy , DNA Methylation/drug effects , Epigenesis, Genetic , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Promoter Regions, Genetic , Xenograft Model Antitumor Assays
15.
Molecules ; 21(5)2016 May 16.
Article in English | MEDLINE | ID: mdl-27196879

ABSTRACT

The enzymatic regioselective monopalmitoylation of racemic 9-(2,3-dihydroxypropyl)- adenine (DHPA), an approved antiviral agent, has been performed by an immobilized form of Candida antarctica B lipase (CAL-B) using a 4:1 DMF/hexane mixture as the reaction medium. To improve the chemical yield of the desired monopalmitoylation reaction, solid-phase chemical modifications of the lipase were evaluated. The reaction yield was successfully increased obtaining 100% product after a second treatment of the product solution with fresh immobilised chemically glycosylated-CAL-B.


Subject(s)
Adenine/analogs & derivatives , Catalysis , Fungal Proteins/chemistry , Lipase/chemistry , Polymers/chemistry , Adenine/chemistry , Candida/enzymology , Enzymes, Immobilized/chemistry , Glycosylation , Hexanes/chemistry , Lipoylation , Solvents/chemistry , Stereoisomerism
16.
J Med Chem ; 59(6): 2810-9, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-26930119

ABSTRACT

2-Phosphonomethylpentanedioic acid (1, 2-PMPA) is a potent inhibitor of glutamate carboxypeptidase II which has demonstrated robust neuroprotective efficacy in many neurological disease models. However, 1 is highly polar containing a phosphonate and two carboxylates, severely limiting its oral bioavailability. We strategized to mask the polar groups via a prodrug approach, increasing the likelihood of passive oral absorption. Our initial strategy was to cover the phosphonate with hydrophobic moieties such as pivaloyloxymethyl (POM) and isopropyloxycarbonyloxymethyl (POC) while keeping the α- and γ-carboxylates unsubstituted. This attempt was unsuccessful due to the chemical instability of the bis-POC/POM derivatives. Addition of α,γ-diesters and α-monoesters enhanced chemical stability and provided excellent oral exposure in mice, but these mixed esters were too stable in vivo, resulting in minimal release of 1. By introducing POC groups on both the phosphonate and α-carboxylate, we synthesized Tris-POC-2-PMPA (21b), which afforded excellent release of 1 following oral administration in both mice and dog.


Subject(s)
Glutamate Carboxypeptidase II/antagonists & inhibitors , Prodrugs/pharmacology , Protease Inhibitors/pharmacology , Administration, Oral , Animals , Antigens, Surface , Biological Availability , Dogs , Drug Discovery , Humans , In Vitro Techniques , Mice , Microsomes, Liver , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/pharmacology , Prodrugs/chemical synthesis , Protease Inhibitors/chemistry , Structure-Activity Relationship
17.
Oncotarget ; 7(9): 10386-401, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26824416

ABSTRACT

Human papillomavirus (HPV) is responsible for cervical cancer, and its role in head and neck carcinoma has been reported. No drug is approved for the treatment of HPV-related diseases but cidofovir (CDV) exhibits selective antiproliferative activity. In this study, we analyzed the effects of CDV-resistance (CDVR) in two HPV(+) (SiHaCDV and HeLaCDV) and one HPV(-) (HaCaTCDV) tumor cell lines. Quantification of CDV metabolites and analysis of the sensitivity profile to chemotherapeutics was performed. Transporters expression related to multidrug-resistance (MRP2, P-gp, BCRP) was also investigated. Alterations of CDV metabolism in SiHaCDV and HeLaCDV, but not in HaCaTCDV, emerged via impairment of UMP/CMPK1 activity. Mutations (P64T and R134M) as well as down-regulation of UMP/CMPK1 expression were observed in SiHaCDV and HeLaCDV, respectively. Altered transporters expression in SiHaCDV and/or HeLaCDV, but not in HaCaTCDV, was also noted. Taken together, these results indicate that CDVR in HPV(+) tumor cells is a multifactorial process.


Subject(s)
Cytosine/analogs & derivatives , Drug Resistance, Neoplasm/genetics , Nucleoside-Phosphate Kinase/metabolism , Organophosphonates/pharmacology , Papillomavirus Infections/drug therapy , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/virology , ATP-Binding Cassette Transporters/biosynthesis , Cell Line, Tumor , Cidofovir , Cytidine Triphosphate/biosynthesis , Cytosine/pharmacology , Female , HeLa Cells , Humans , Microbial Sensitivity Tests , Nucleoside-Phosphate Kinase/biosynthesis , Papillomaviridae , Phosphorylation , Solute Carrier Proteins/biosynthesis , Uridine Triphosphate/biosynthesis , Uterine Cervical Neoplasms/pathology
18.
Bioorg Med Chem ; 22(10): 2896-906, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24731540

ABSTRACT

Even number fatty acid residues-docosanoyl (behenoyl) and stearoyl were selected for introduction to the N(4)-position of (S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine) (HPMPC, cidofovir), and its 5-azacytosine counterpart, (S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine) (HPMP-5-azaC) with the aim to prepare a new type of lipophilic prodrugs. The study on the influence of these modifications to the stability and biological activity of both antivirals was performed. Different reactivity of both systems towards acylation reactions was also found: the 4-NH2 group of cidofovir was more reactive compared to that of HPMP-5-azaC. In 5-azacytosine derivatives, we found mostly a destabilizing effect of the N(4)-acylation but this could be compensated by a positive influence of the esterification of the phosphonate group. Chemical stability of the 5-azacytosine moiety in the HPMP series is increasing in the following order: HPMP-5-azaC

Subject(s)
Antiviral Agents/pharmacology , Cytosine/analogs & derivatives , Herpesviridae/drug effects , Hydrophobic and Hydrophilic Interactions , Organophosphonates/pharmacology , Prodrugs/chemistry , Prodrugs/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cidofovir , Cytosine/chemical synthesis , Cytosine/chemistry , Cytosine/pharmacology , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Organophosphonates/chemical synthesis , Organophosphonates/chemistry , Prodrugs/chemical synthesis , Structure-Activity Relationship , Virus Replication/drug effects
19.
Pharm Res ; 31(4): 1071-81, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24271238

ABSTRACT

PURPOSE: In this work, we investigate prodrug and enhancer approaches for transdermal and topical delivery of antiviral drugs belonging to the 2,6-diaminopurine acyclic nucleoside phosphonate (ANP) group. Our question was whether we can differentiate between transdermal and topical delivery, i.e., to control the delivery of a given drug towards either systemic absorption or retention in the skin. METHODS: The in vitro transdermal delivery and skin concentrations of seven antivirals, including (R)- and (S)-9-[2-(phosphonomethoxy)propyl]-2,6-diaminopurine (PMPDAP), (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]-2,6-diaminopurine ((S)-HPMPDAP), its 8-aza analog, and their cyclic and hexadecyloxypropyl (HDP) prodrugs, was investigated with and without the penetration enhancer dodecyl-6-(dimethylamino)hexanoate (DDAK) using human skin. RESULTS: The ability of ANPs to cross the human skin barrier was very low (0.5-1.4 nmol/cm(2)/h), and the majority of the compounds were found in the stratum corneum, the uppermost skin layer. The combination of antivirals and the penetration enhancer DDAK proved to be a viable approach for transdermal delivery, especially in case of (R)-PMPDAP, an anti-HIV effective drug (30.2 ± 2.3 nmol/cm(2)/h). On the other hand, lysophospholipid-like HDP prodrugs, e.g., HDP-(S)-HPMPDAP, reached high concentrations in viable epidermis without significant systemic absorption. CONCLUSIONS: By using penetration enhancers or lysolipid prodrugs, it is possible to effectively target systemic diseases by the transdermal route or to target cutaneous pathologies by topical delivery.


Subject(s)
2-Aminopurine/analogs & derivatives , Antiviral Agents/administration & dosage , Drug Delivery Systems/methods , Prodrugs/administration & dosage , Skin Absorption/drug effects , 2-Aminopurine/administration & dosage , 2-Aminopurine/chemistry , Administration, Cutaneous , Antiviral Agents/chemistry , Female , Humans , Liposomes , Organ Culture Techniques , Prodrugs/chemistry , Skin Absorption/physiology
20.
J Virol ; 87(22): 12422-32, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24027315

ABSTRACT

Acyclic nucleoside phosphonates (ANPs), such as (S)-1-[(3-hydroxy-2-phosphonomethoxy)propyl)]cytosine (HPMPC), are an important group of broad-spectrum antiviral agents with activity against DNA viruses. In this report, we present the in vitro potencies of novel ANPs against gammaherpesviruses, including Kaposi's sarcoma-associated herpesvirus, Epstein-Barr virus (EBV), and three animal gammaherpesviruses. 1-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]-5-azacytosine (HPMP-5-azaC), (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]-3-deazaadenine (3-deaza-HPMPA), and their cyclic derivatives have emerged as highly potent antigammaherpesvirus agents. Interestingly, cyclic prodrugs of ANPs exhibited reduced activities against EBV strain P3HR-1, but not against EBV strain Akata. Cell culture metabolism studies with HPMPC and cyclic HPMPC revealed that these differences were attributable to an altered drug metabolism in P3HR-1 cells after EBV reactivation and, more specifically, to a reduced hydrolysis of cyclic HPMPC by cyclic CMP phosphodiesterase. We did not correlate this effect with phosphodiesterase downregulation, or to functional mutations. Instead, altered cyclic AMP levels in P3HR-1 cells indicated a competitive inhibition of the phosphodiesterase by this cyclic nucleotide. Finally, both HPMPC and HPMP-5-azaC emerged as highly effective inhibitors in vivo through significant inhibition of murine gammaherpesvirus replication and dissemination. With the current need for potent antigammaherpesvirus agents, our findings underline the requirement of appropriate surrogate viruses for antiviral susceptibility testing and highlight HPMP-5-azaC as a promising compound for future clinical development.


Subject(s)
Cytosine/analogs & derivatives , Gammaherpesvirinae/drug effects , Herpesviridae Infections/drug therapy , Organophosphorus Compounds/pharmacology , Prodrugs/pharmacology , Tumor Virus Infections/drug therapy , Virus Activation/drug effects , Virus Replication/drug effects , Animals , Antiviral Agents/pharmacology , Apoptosis/drug effects , Blotting, Western , Cells, Cultured , Cidofovir , Cyclic AMP/metabolism , Cytosine/pharmacology , Herpesviridae Infections/virology , Humans , Kidney/drug effects , Kidney/virology , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/virology , Mice , Mice, Inbred BALB C , NIH 3T3 Cells , Organophosphonates/pharmacology , Tumor Virus Infections/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...